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● The NJL model is very simple , and works well to describe
properties of single hadrons.

● Traditional nuclear physics treats nucleons as point particles.
But are there “quark effects” in the nucleus ?

● We know that in nuclear systems there are strong mean
fields , mainly a scalar (attractive) and a vector (repulsive)
mean field. Quarks inside the nucleons feel these mean
fields: Origin of “medium modifications” . Examples:
Modification of electromagnetic form factors measured in
proton knock-out (e, e′p) reactions; Modification of structure
functions measured in deep inelastic electron-nucleus
scattering (⇒ EMC effect ). NJL model is suitable to
describe these phenomena!

● Is there a phase transition from nuclear matter to to quark
matter at high densities? (⇒ relevant for neutron stars ).
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In nuclear matter, the quarks feel a scalar potential (incorporated
into the mass M ), and a vector potential (called V µ).

● Follow our earlier mean field description of the vacuum:
Start from the NJL Lagrangian, including the vector
interaction term −Gω

(

ψγµψ
)2

. Add
(

−Mψψ − Vµψγ
µψ + C

)

,
and subtract again. Assume

ψψ = 〈ψψ〉+ : ψψ : , ψγµψ = 〈ψγµψ〉+ : ψγµψ :

where 〈ψψ〉 and 〈ψγµψ〉 now refer to nuclear matter .

● Require that Lres has no c-number terms and no terms
linear in : ψψ : and : ψγµψ : . This gives

M = m− 2Gπ〈ψψ〉 , V µ = 2Gω〈ψγµψ〉

C = − (M −m)2

4Gπ
+

V 2

4Gω

Note: For nuclear matter at rest, only V 0 is nonzero (V i = 0).
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Next, write down an expression for the energy density .
What is the difference between the vacuum and nuclear matter?
The presence of nucleons! They have a mass MN (M)
determined from the Faddeev equation; they feel a vector
potential 3V 0; and they move with momenta up to the Fermi
momentum pF . (Baryon density is ρ = 2p3

F /(3π
2).) Therefore,

E(M) = Evac(M) − V 2
0

4Gω
+ 4

∫ pF d3k

(2π)3

(

√

MN (M)2 + k2 + 3V 0
)

Note: By including the mean vector field V 0 in the Faddeev equation, one can confirm that the nucleon energy

in the medium is ǫp =
p

MN (M)2 + k2 + 3V 0 .

Finally, M and V 0 are determined by minimization : For fixed pF ,

∂E/∂M = 0 ⇒ in-medium gap equation
∂E/∂V 0 = 0 ⇒ V 0 = 6Gωρ.
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The function MN (M) is obtained from the Faddeev equation (or its
static approximation).
So far, we only needed MN (M0=0.4 GeV) = 0.94 GeV, but the in-medium gap

equation will give solutions M < M0 for finite density.

Note that there is a curvature (“scalar polarizability ”), which is
important for saturation of the binding energy per nucleon in
nuclear matter.
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Binding energy per nucleon: EB/A = E/ρ−MN0, where MN0 =
nucleon mass in vacuum = 0.94 GeV:

The strength of the vector mean field (Gω) is adjusted so that the
curve passes through the empirical saturation point
(EB/A, ρ)=(-15 MeV, 0.16 nucleons/ fm−3).
Important for saturation: Unphysical quark thresholds for nucleon are absent in the

proper-time regularization scheme.



Solutions of in-medium gap equation

❖ Motivations

❖ Nuclear matter

❖ Binding energy

❖ EMC effect

❖ Quark distributions

❖ EMC ratio

❖ High density

❖ Quark matter

❖ Pairing in QM

❖ Phase transition

❖ Compact stars

❖ Phase diagrams

❖ Comments

7 / 27

Nucleon and quark masses as functions of density:

The dashed line shows the quark mass in quark matter for
comparison (to be discussed later), and indicates a chiral phase
transition at relatively low densities.
In nuclear matter, no strong indication of chiral restorati on is
seen.
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In 1982, the European Muon Collaboration (EMC) observed that
the structure function of the nucleus (F2A) is not equal to the sum of
free nucleon structure functions. Many calculations have shown
that this cannot be explained by binding and Fermi motion of
nucleons. Is this a “medium modification” of the single nucleon
structure function?
In the parton model,

F2A(x) = x
∑

q

e2q f
A
q (x)

where 0 < x < 1 is the Bjorken variable for the nucleus, and fA
q (x)

is the

● probability that quark q has (light cone) momentum
fraction x in the nucleus A;

● or: (probability that nucleon has fraction y in nucleus) ×
(probability that quark has fraction x/y in the nucleon).
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Mathematically, this can be expressed by a convolution:

fA
q (x) =

∫ 1

0

dy

∫ 1

0

dz δ(x− yz) fN
q (z) fA

N (y)

● We know already how to calculate fN
q (z). Remember: It is the

quark 2-point function (propagator) inside the nucleon,
for fixed quark momentum component k+ = p+z.

● Then we also know how to calculate fA
N (y): It is the nucleon

propagator in nuclear matter, for fixed nucleon
momentum component p+ = yP+. (Here
P+ = (P 0 + P 3)/

√
2 = MA/

√
2 refers to the total system at

rest.)

Expect: fA
N (y) peaks at y ≃ 1/A, and fA

q (x) peaks at x ≃ 1/(3A).
To avoid small numbers x, y, one usually uses xA ≡ Ax and
yA ≡ Ay. Then fA

N (yA) will peak around yA ≃ 1, and xA around
xA ≃ 1/3.
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Momentum distribution of nucleons (per nucleon) in nuclear
matter:

fA
N (yA) =

3

4

(

ǫF
pF

)3
[

(

pF

ǫF

)2

− (1 − yA)2

]
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Results for the quark momentum distribution (per nucleon) in
isospin symmetric nuclear matter (sum of up and down quark
distributions): Fig.15

● dotted line . . . distribution in free nucleon

● dashed line . . . with in-medium masses

● dash-dotted line . . . incl. Fermi motion of nucleons

● solid line . . . total result, incl. effect of mean vector field.
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“EMC ratio” in isospin symmetric nuclear matter: Fig.16

RA/N (x) ≡ F2A(xA)

ZF2p(x) +NF2n(x)

parton model
=⇒

xAf
A
q (xA)

xfN
q (x)

Note: In the figure, x is the Bjorken variable for the free nucleon.
Then

xA
x

=
MN
MN

, where MN is the free nucleon mass, and MN = MA/A>
∼

1 is the mass of the system

per nucleon.
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These calculations can be done also for finite nuclei , although we
do not go into details here. We show examples for the nuclei 7Li,
11B and 27Al. For these nuclei, a new “polarized EMC effect” has
been predicted. We also show these exciting predictions, which
will be tested at JLab experiments.
7Li: Fig.17
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EMC effect (2): Fig. 18
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Using the NJL model, we can describe the saturation properties of
nuclear matter. But what happens at very high densities , like in
the interior of neutron stars?

● Many people believe that a transition to quark matter takes
place.

● The NJL model has been used extensively to describe quark
matter. In particular, the importance of a color
superconducting state has been emphasized: The
interaction in the scalar diquark channel gives rise to pairing ,
like in the BCS theory.

● Here we first construct the equation of state for quark matter,
and then use the Gibbs conditions to look for phase
transitions from nuclear matter to quark matter.
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If we replace the nucleon Fermi motion in our expression for E by
the quark Fermi motion

4

∫ pF d3k

(2π)3

(

√

M2
N + k2 + 3V 0

)

→ 12

∫ pF d3k

(2π)3

(

√

M2 + k2 + V 0
)

we can describe quark matter (at the same baryon number density
ρ = 2p3

F /(3π
2)). Eventually, we have 2 separate equations of

state: Nuclear matter and quark matter .
The Gibbs condition (for T = 0) says that the phase with larger
pressure (P ) for given chemical potential (µ) is the stable phase:

Pstable(µ) > Punstable(µ)

where

P = ρ2 ∂

∂ρ

(E
ρ

)

µ =
∂E
∂ρ
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There is no crossing of the curves! This would mean that nuclear
matter is always the stable phase.
Some details on these plots:

● The density increases along the lines, starting with ρ = 0 at the open ends.

● At low densities, there is a gas-liquid phase transition in the nuclear matter phase, and a chiral phase
transition in the quark matter phase.

● For example, in the nuclear matter phase, for densities below the saturation density (where P crosses
zero), the state is a mixture of “vacuum” and “nuclear matter”: Nuclear matter droplets surrounded by
vacuum.
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So far, our classical fields were 〈ψψ〉 (chiral condensate) and
〈ψγ0ψ〉 (quark density). However, there is also the possibility of a
non-zero “diquark condensate”

∆ = −Gs〈ψiγ5β2Cτ2ψ
T ± ψTC−1τ2iγ5β2ψ〉

which corresponds to the gap in BCS theory.
If ∆ is non-zero, the color symmetry is spontaneously broken
SU(3) → SU(2) (because of the choice of β2 among 3 possible
diquark colors). Also the phase symmetry U(1) is broken.

The mean field approximation with the 3 fields 〈ψψ〉, 〈ψγ0ψ〉, and ∆

is done most conveniently in the Nambu-Gorkov formalism , using

the quark field Ψ = 1√
2

(

ψ,Cτ2ψ
T
)

.
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By increasing the strength of the pairing interaction (rs = Gs/Gπ),
quark matter becomes more stable, and a phase transition from
nuclear matter to quark matter becomes possible :

Here NM = nuclear matter, QM = quark matter.
Take rs = 0.2 as an example: There is a 1st order phase
transition from nuclear to quark matter, which begins at ρ = 0.57

fm−3 (density at crossing on the NM curve) and ends at ρ = 0.95

fm−3 (density at crossing on the QM curve), see next slide.
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● For applications to compact stars, one must extend the
description to isospin asymmetric systems (different
numbers of protons/neutrons, or up/down quarks): Introduce
a second chemical potential for isospin, and electrons in
β-equilibrium.

● Look for Phase transition NM → QM by using Gibbs criteria:

● Draw a phase diagram in the plane of the 2 chemical
potentials. Identify regions where nuclear matter (NM),
normal quark matter (NQM), or superconducting quark
matter (SQM, or “2SC-phase”) have the largest pressure.

● Along the phase boundaries : Determine the volume
fractions of the two phases so as to get a charge neutral
mixed phase.
(See: N. Glendenning, Phys, Rev. D 46 (1992) 1274.)

● Use the resulting charge neutral equation of state as input in
the Tolman-Oppenheimer-Volkoff (TOV) equation to
calculate compact stars.
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Phase diagrams (2): Fig. 24
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Compact stars: Casers = 0.25 (Fig.25)
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● The pressure is almost constant in the mixed phase
(similar to naive Maxwell construction).

● There are stable (almost-)neutron stars with
M < 1.25M⊙ and ρc < 0.7 fm−3, which may have a
small mixed phase core.

● There are stable stars made almost of SQM with
1.1M⊙ < M < 1.3M⊙ and ρc ≃ 1 − 2 fm−3.
For example, the maximum mass star has a radius of 8.2 km, and the SQM

phase is realized within 6.0 km.



End of this lecture
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The good things about the NJl model are:

● It is simple.

● We can describe non-perturbative effects (like bound
states) in terms of quarks.

● We can extend it to finite density, temperature, and finite
nuclei.

● We can use this model to make predictions.
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● Figs.11, 12, 13: See W. Bentz et al, Nucl. Phys. A 720 (2003), p. 95; Figs. 1, 2, 3.
The proper time cut-off is used here (ΛUV = 0.64 GeV, ΛIR = 0.2 GeV). The 4-Fermi coupling
constants are Gπ = 19.6 GeV, rs ≡ Gs/Gπ = 0.51, rω ≡ Gω/Gπ = 0.37.

● Fig.14: Here ǫF = 0.914 GeV, pF = 0.26 GeV is used in the expression above the figure. For the
derivation of the formula and discussions, see: H. Mineo et al, Nucl. Phys. A 735 (2004), p. 482;
sect.2.2.

● Figs. 15, 16: See H. Mineo et al, Nucl. Phys. A 735 (2004), p. 482; Figs. 9, 11. The proper time cut-off
is used here (ΛUV = 0.64 GeV, ΛIR = 0.2 GeV). The effective masses of the quark, diquark and
nucleon at zero density are 0.4 GeV, 0.576 GeV, 0.94 GeV, and at density ρ = 0.16 fm−3 they are
0.308 GeV, 0.413 GeV, 0.707 GeV. The Fermi energy of the nucleon is ǫF = 0.914 GeV.

● Figs. 17, 18: See I.C. Cloët et al, Phys. Lett. B 642 (2006), p. 210; Figs. 6, 7, 9. The calculation of the
quark momentum distributions in the free nucleon includes both the scalar and axial vector diquark
channels, see I.C. Cloët et al, Phys. Lett. B 621 (2005), p. 246 for details. The nucleon momentum
distributions are calculated for finite nuclei in the mean field approximation. The proper time cut-off is
used in all calculations (ΛUV = 0.64 GeV, ΛIR = 0.2 GeV).

● Figs. 19 - 22: See W. Bentz et al, Nucl. Phys. A 720 (2003), p. 95; Figs. 8, 13, 14.
The proper-time regularization is used in all calculations. For the parameters, see Table 1 of the paper.

● Figs. 23 - 25: See S. Lawley et al, Phys. Lett. B 632 (2006), p. 495; Figs. 1 - 3. The proper-time
regularization is used in all calculations. For the parameters, see the paper.
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